最近在做抽奖服务端接口,会涉及到抽奖概率的问题,网上查资料找到一个比较好的抽奖概率的算法,Alias Method概率抽奖算法。今天就来分享一下这个算法的C#、PHP以及Java的实现。
举个例子,游戏中玩家推倒了一个boss,会按如下概率掉落物品:10%掉武器 20%掉饰品 30%掉戒指 40%掉披风。现在要给出下一个掉落的物品类型,或者说一个掉落的随机序列,要求符合上述概率。
	
一般会想到的两种解法
第一种算法,构造一个容量为100(或其他)的数组,将其中10个元素填充为类型1(武器),20个元素填充为类型2(饰品)…构造完毕之后,在1到100之间取随机数rand,取到的array[rand]对应的值,即为随机到的类型。这种方法优点是实现简单,构造完成之后生成随机类型的时间复杂度就是O(1),缺点是精度不够高,占用空间大,尤其是在类型很多的时候。
	
第二种就是一般的离散算法,通过概率分布构造几个点,[10, 30, 60, 100],没错,后面的值就是前面依次累加的概率之和(是不是像斐波那契数列)。在生成1~100的随机数,看它落在哪个区间,比如50在[30,60]之间,就是类型3。在查找时,可以采用线性查找,或效率更高的二分查找,时间复杂度O(logN)。
这里推荐一个大牛的两篇文章,从数学入手,探讨各种算法实现。《用JavaScript玩转游戏编程(一)掉宝类型概率》 和《实验比较各离散采样算法》 。想深入了解的朋友推荐看看。
参考他的文章中得到两个概念,PDF(密度分布函数)和 CDF(累积分布函数)两种概率分布,分别对应如上两种算法:
| T | 1 | 2 | 3 | 4 | 
| 0.1 | 0.2 | 0.3 | 0.4 | |
| CDF | 0.1 | 0.3 | 0.6 | 
					1.0 | 
			
好了,现在就来说一下Alias Method(别名方法)
在这里我们不深究他的数学原理(http://www.keithschwarz.com/darts-dice-coins/ 这篇文章里详述了其原理),来看看如何使用和实现。譬如说如上的PDF[0.1,0.2,0.3,0.4],将每种概率当做一列,别名算法最终的结果是要构造拼装出一个每一列合都为1的矩形,若每一列最后都要为1,那么要将所有元素都乘以4(概率类型的数量)

此时会有概率大于1的和小于1的,接下来就是构造出某种算法用大于1的补足小于1的,使每种概率最后都为1,注意,这里要遵循一个限制:每列至多是两种概率的组合。

最终,我们得到了两个数组,一个是在下面原始的prob数组[0.4,0.8,0.6,1],另外就是在上面补充的Alias数组,其值代表填充的那一列的序号索引,(如果这一列上不需填充,那么就是NULL),[3,4,4,NULL]。当然,最终的结果可能不止一种,你也可能得到其他结果。
等等,这个问题还没有解决,得到这两个数组之后,随机取其中的一列,比如是第三列,让prob[3]的值与一个随机小数f比较,如果f小于prob[3],那么结果就是3,否则就是Alias[3],即4。
我们可以来简单验证得到的概率是不是正确的,比如随机到第三列的概率是1/4,得到第三列下半部分的概率为1/4*3/5,记得在第一列还有它的一部分,那里的概率为1/4*(1-2/5),两者相加最终的结果还是3/10,符合原来的pdf概率。这种算法初始化较复杂,但生成随机结果的时间复杂度为O(1),是一种性能非常好的算法。
| T | 1 | 2 | 3 | 4 | 
| 0.1 | 0.2 | 0.3 | 0.4 | |
| Alias | 3 | 4 | 4 | 
					NULL | 
			
一、Alias Method概率抽奖算法的C#实现
	
- using System;
 - using System.Collections;
 - using System.Collections.Generic;
 - using System.linq;
 - using System.Text;
 - using System.Threading.Tasks;
 - namespace Lanhusoft.Core
 - {
 - public class AliasMethod
 - {
 - /* The probability and alias tables. */
 - private int[] _alias;
 - private double[] _probability;
 - public AliasMethod(List<Double> probabilities)
 - {
 - /* Allocate space for the probability and alias tables. */
 - _probability = new double[probabilities.Count];
 - _alias = new int[probabilities.Count];
 - /* Compute the average probability and cache it for later use. */
 - double average = 1.0 / probabilities.Count;
 - /* Create two stacks to act as worklists as we populate the tables. */
 - var small = new Stack<int>();
 - var large = new Stack<int>();
 - /* Populate the stacks with the input probabilities. */
 - for (int i = 0; i < probabilities.Count; ++i)
 - {
 - /* If the probability is below the average probability, then we add
 - * it to the small list; otherwise we add it to the large list.
 - */
 - if (probabilities[i] >= average)
 - large.Push(i);
 - else
 - small.Push(i);
 - }
 - /* As a note: in the mathematical specification of the algorithm, we
 - * will always exhaust the small list before the big list. However,
 - * due to floating point inaccuracies, this is not necessarily true.
 - * Consequently, this inner loop (which tries to pair small and large
 - * elements) will have to check that both lists aren't empty.
 - */
 - while (small.Count > 0 && large.Count > 0)
 - {
 - /* Get the index of the small and the large probabilities. */
 - int less = small.Pop();
 - int more = large.Pop();
 - /* These probabilities have not yet been scaled up to be such that
 - * 1/n is given weight 1.0. We do this here instead.
 - */
 - _probability[less] = probabilities[less] * probabilities.Count;
 - _alias[less] = more;
 - /* Decrease the probability of the larger one by the appropriate
 - * amount.
 - */
 - probabilities[more] = (probabilities[more] + probabilities[less] - average);
 - /* If the new probability is less than the average, add it into the
 - * small list; otherwise add it to the large list.
 - */
 - if (probabilities[more] >= average)
 - large.Push(more);
 - else
 - small.Push(more);
 - }
 - /* At this point, everything is in one list, which means that the
 - * remaining probabilities should all be 1/n. Based on this, set them
 - * appropriately. Due to numerical issues, we can't be sure which
 - * stack will hold the entries, so we empty both.
 - */
 - while (small.Count > 0)
 - _probability[small.Pop()] = 1.0;
 - while (large.Count > 0)
 - _probability[large.Pop()] = 1.0;
 - }
 - /**
 - * Samples a value from the underlying distribution.
 - *
 - * @return A random value sampled from the underlying distribution.
 - */
 - public int next()
 - {
 - long tick = DateTime.Now.Ticks;
 - var seed = ((int)(tick & 0xffffffffL) | (int)(tick >> 32));
 - unchecked
 - {
 - seed = (seed + Guid.NewGuid().GetHashCode() + new Random().Next(0, 100));
 - }
 - var random = new Random(seed);
 - int column = random.Next(_probability.Length);
 - /* Generate a biased coin toss to determine which option to pick. */
 - bool coinToss = random.NextDouble() < _probability[column];
 - return coinToss ? column : _alias[column];
 - }
 - }
 - }
 
	
二、Alias Method概率抽奖算法的PHP实现
	
- <?php
 - class AliasMethod
 - {
 - private $length;
 - private $prob_arr;
 - private $alias;
 - public function __construct ($pdf)
 - {
 - $this->length = 0;
 - $this->prob_arr = $this->alias = array();
 - $this->_init($pdf);
 - }
 - private function _init($pdf)
 - {
 - $this->length = count($pdf);
 - if($this->length == 0)
 - die("pdf is empty");
 - if(array_sum($pdf) != 1.0)
 - die("pdf sum not equal 1, sum:".array_sum($pdf));
 - $small = $large = array();
 - $average=1.0/$this->length;
 - for ($i=0; $i < $this->length; $i++)
 - {
 - $pdf[$i] *= $this->length;
 - if($pdf[$i] < $average)
 - $small[] = $i;
 - else
 - $large[] = $i;
 - }
 - while (count($small) != 0 && count($large) != 0)
 - {
 - $s_index = array_shift($small);
 - $l_index = array_shift($large);
 - $this->prob_arr[$s_index] = $pdf[$s_index]*$this->length;
 - $this->alias[$s_index] = $l_index;
 - $pdf[$l_index] += $pdf[$s_index]-$average;
 - if($pdf[$l_index] < $average)
 - $small[] = $l_index;
 - else
 - $large[] = $l_index;
 - }
 - while(!empty($small))
 - $this->prob_arr[array_shift($small)] = 1.0;
 - while (!empty($large))
 - $this->prob_arr[array_shift($large)] = 1.0;
 - }
 - public function next_rand()
 - {
 - $column = mt_rand(0, $this->length - 1);
 - return mt_rand() / mt_getrandmax() < $this->prob_arr[$column] ? $column : $this->alias[$column];
 - }
 - }
 - ?>
 
	
三、Alias Method概率抽奖算法的Java实现
	
- package com.lanhusoft.rsaapp;
 - import android.util.Log;
 - import java.util.*;
 - import java.util.concurrent.atomic.AtomicInteger;
 - public final class AliasMethod {
 - /* The random number generator used to sample from the distribution. */
 - private final Random random;
 - /* The probability and alias tables. */
 - private final int[] alias;
 - private final double[] probability;
 - /**
 - * Constructs a new AliasMethod to sample from a discrete distribution and
 - * hand back outcomes based on the probability distribution.
 - * <p/>
 - * Given as input a list of probabilities corresponding to outcomes 0, 1,
 - * ..., n - 1, this constructor creates the probability and alias tables
 - * needed to efficiently sample from this distribution.
 - *
 - * @param probabilities The list of probabilities.
 - */
 - public AliasMethod(List<Double> probabilities) {
 - this(probabilities, new Random());
 - }
 - /**
 - * Constructs a new AliasMethod to sample from a discrete distribution and
 - * hand back outcomes based on the probability distribution.
 - * <p/>
 - * Given as input a list of probabilities corresponding to outcomes 0, 1,
 - * ..., n - 1, along with the random number generator that should be used
 - * as the underlying generator, this constructor creates the probability
 - * and alias tables needed to efficiently sample from this distribution.
 - *
 - * @param probabilities The list of probabilities.
 - * @param random The random number generator
 - */
 - public AliasMethod(List<Double> probabilities, Random random) {
 - /* Begin by doing basic structural checks on the inputs. */
 - if (probabilities == null || random == null)
 - throw new NullPointerException();
 - if (probabilities.size() == 0)
 - throw new IllegalArgumentException("Probability vector must be nonempty.");
 - /* Allocate space for the probability and alias tables. */
 - probability = new double[probabilities.size()];
 - alias = new int[probabilities.size()];
 - /* Store the underlying generator. */
 - this.random = random;
 - /* Compute the average probability and cache it for later use. */
 - final double average = 1.0 / probabilities.size();
 - /* Make a copy of the probabilities list, since we will be making
 - * changes to it.
 - */
 - probabilities = new ArrayList<Double>(probabilities);
 - /* Create two stacks to act as worklists as we populate the tables. */
 - Deque<Integer> small = new ArrayDeque<Integer>();
 - Deque<Integer> large = new ArrayDeque<Integer>();
 - /* Populate the stacks with the input probabilities. */
 - for (int i = 0; i < probabilities.size(); ++i) {
 - /* If the probability is below the average probability, then we add
 - * it to the small list; otherwise we add it to the large list.
 - */
 - if (probabilities.get(i) >= average)
 - large.add(i);
 - else
 - small.add(i);
 - }
 - /* As a note: in the mathematical specification of the algorithm, we
 - * will always exhaust the small list before the big list. However,
 - * due to floating point inaccuracies, this is not necessarily true.
 - * Consequently, this inner loop (which tries to pair small and large
 - * elements) will have to check that both lists aren't empty.
 - */
 - while (!small.isEmpty() && !large.isEmpty()) {
 - /* Get the index of the small and the large probabilities. */
 - int less = small.removeLast();
 - int more = large.removeLast();
 - /* These probabilities have not yet been scaled up to be such that
 - * 1/n is given weight 1.0. We do this here instead.
 - */
 - probability[less] = probabilities.get(less) * probabilities.size();
 - alias[less] = more;
 - /* Decrease the probability of the larger one by the appropriate
 - * amount.
 - */
 - probabilities.set(more,
 - (probabilities.get(more) + probabilities.get(less)) - average);
 - /* If the new probability is less than the average, add it into the
 - * small list; otherwise add it to the large list.
 - */
 - if (probabilities.get(more) >= 1.0 / probabilities.size())
 - large.add(more);
 - else
 - small.add(more);
 - }
 - /* At this point, everything is in one list, which means that the
 - * remaining probabilities should all be 1/n. Based on this, set them
 - * appropriately. Due to numerical issues, we can't be sure which
 - * stack will hold the entries, so we empty both.
 - */
 - while (!small.isEmpty())
 - probability[small.removeLast()] = 1.0;
 - while (!large.isEmpty())
 - probability[large.removeLast()] = 1.0;
 - }
 - /**
 - * Samples a value from the underlying distribution.
 - *
 - * @return A random value sampled from the underlying distribution.
 - */
 - public int next() {
 - /* Generate a fair die roll to determine which column to inspect. */
 - int column = random.nextInt(probability.length);
 - /* Generate a biased coin toss to determine which option to pick. */
 - boolean coinToss = random.nextDouble() < probability[column];
 - /* Based on the outcome, return either the column or its alias. */
 - /* Log.i("1234","column="+column);
 - Log.i("1234","coinToss="+coinToss);
 - Log.i("1234","alias[column]="+coinToss);*/
 - return coinToss ? column : alias[column];
 - }
 - public static void main(String[] args) {
 - TreeMap<String, Double> map = new TreeMap<String, Double>();
 - map.put("1金币", 0.2);
 - map.put("2金币", 0.15);
 - map.put("3金币", 0.1);
 - map.put("4金币", 0.05);
 - map.put("未中奖", 0.5);
 - List<Double> list = new ArrayList<Double>(map.values());
 - List<String> gifts = new ArrayList<String>(map.keySet());
 - AliasMethod method = new AliasMethod(list);
 - Map<String, AtomicInteger> resultMap = new HashMap<String, AtomicInteger>();
 - for (int i = 0; i < 100000; i++) {
 - int index = method.next();
 - String key = gifts.get(index);
 - if (!resultMap.containsKey(key)) {
 - resultMap.put(key, new AtomicInteger());
 - }
 - resultMap.get(key).incrementAndGet();
 - }
 - for (String key : resultMap.keySet()) {
 - System.out.println(key + "==" + resultMap.get(key));
 - }
 - }
 - }
 
	
文章转载自:蓝狐软件工作室 » C#&PHP&Java实现Alias Method概率抽奖算法
	
架构C


